Definitions | s = t, t T, x:AB(x), x:A. B(x), EState(T), a:A fp B(a), f(a), Id, , strong-subtype(A;B), P Q, Type, EqDecider(T), Unit, left + right, IdLnk, x:A B(x), EOrderAxioms(E; pred?; info), kindcase(k; a.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r s, e < e', , b, constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'), x,y. t(x;y), <a, b>, A, pred(e), first(e), x. t(x), P & Q, Top, ES, AbsInterface(A), E, {x:A| B(x)} , E(X), let x,y = A in B(x;y), t.1, e c e', (e < e'), P Q, s ~ t, es-eq(es), eqof(d), ff, b, P Q, p =b q, i <z j, i z j, (i = j), x =a y, null(as), a < b, , x f y, =, a < b, =, =, [d], eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, a = b, deq-member(eq;x;L), e = e', p q, p q, p q, tt, , f**(e), e X, inr x , inl x , False, True, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , T, Dec(P), x:A. B(x), b | a, a ~ b, a b, a <p b, a < b, A c B, xL. P(x), (xL.P(x)), r < s, q-rel(r;x), Outcome, (x l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , e<e'.P(e), ee'.P(e), e<e'. P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), SqStable(P), a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), f g, f(x)?z, P Q |