Nuprl Lemma : es-fix-sqequal 11,40

es:ES, X:AbsInterface(Top), f:(E(X)E(X)).
(x:E(X). f(x) c x (e:E(X). (f(e) = e  E)  (f**(e) ~ e)) 
latex


Definitionss = t, t  T, x:AB(x), x:AB(x), EState(T), a:A fp B(a), f(a), Id, , strong-subtype(A;B), P  Q, Type, EqDecider(T), Unit, left + right, IdLnk, x:A  B(x), EOrderAxioms(Epred?info), kindcase(ka.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r  s, e < e', , b, constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'), x,yt(x;y), <ab>, A, pred(e), first(e), xt(x), P & Q, Top, ES, AbsInterface(A), E, {x:AB(x)} , E(X), let x,y = A in B(x;y), t.1, e c e', (e < e'), P  Q, s ~ t, es-eq(es), eqof(d), ff, b, P  Q, p =b q, i <z j, i j, (i = j), x =a y, null(as), a < b, , x f y, =, a < b, =, =, [d], eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, a = b, deq-member(eq;x;L), e = e', p  q, p  q, p q, tt, , f**(e), e  X, inr x , inl x , False, True, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , T, Dec(P), x:AB(x), b | a, a ~ b, a  b, a <p b, a < b, A c B, xLP(x), (xL.P(x)), r < s, q-rel(r;x), Outcome, (x  l), l_disjoint(T;l1;l2), (e <loc e'), e loc e' , e<e'.P(e), ee'.P(e), e<e'P(e), ee'.P(e), e[e1,e2).P(e), e[e1,e2).P(e), e[e1,e2].P(e), e[e1,e2].P(e), e(e1,e2].P(e), SqStable(P), a =!x:TQ(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a  b, IsIntegDom(r), IsPrimeIdeal(R;P), f  g, f(x)?z, P  Q
Lemmasiff wf, rev implies wf, deq property, strong-subtype-deq-subtype, strong-subtype wf, es-E-interface-strong-subtype, sq stable from decidable, decidable assert, true wf, false wf, btrue wf, bfalse wf, es-is-interface wf, eqtt to assert, iff transitivity, eqff to assert, assert of bnot, eqof wf, es-eq wf, bnot wf, es-interface wf, event system wf, es-causl wf, es-causle wf, es-E-interface-subtype rel, es-E wf, es-E-interface wf, deq wf, EOrderAxioms wf, IdLnk wf, Msg wf, unit wf, nat wf, val-axiom wf, qle wf, cless wf, bool wf, top wf, Knd wf, kindcase wf, constant function wf, assert wf, not wf, loc wf, pred! wf, strongwellfounded wf, member wf, rationals wf, Id wf, EState wf, subtype rel wf

origin